Published online in Wiley InterScience (www.interscience.wiley.com). DOI:10.1002/aoc.562

Crystallographic report

Dimeric tetraphenyl-1-hydroxo-3trifluoromethanesulfonatodistannoxane, $[Ph_2(HO)SnOSn(O_3SCF_3)Ph_2]_2$

Jens Beckmann*, Dainis Dakternieks, Andrew Duthie and Cassandra Mitchell

Centre for Chiral and Molecular Technologies, Deakin University, Geelong 3217, Australia

Received 9 September 2003; Revised 16 September 2003; Accepted 17 September 2003

The molecular structure of the title compound, obtained by an adventitious phenyl group cleavage of Ph₃SnOSnPh₃ with triflic acid, reveals discrete centrosymmetric units of [Ph₂(HO)SnOSn(O₃SCF₃)Ph₂]₂ that are loosely associated via hydrogen bonding. Copyright © 2004 John Wiley & Sons, Ltd.

KEYWORDS: crystal structure; tetraorganodistannoxane; tin

*Correspondence to: Jens Beckmann, Centre for Chiral and Molecular Technologies, Deakin University, Geelong 3217, Australia.

E-mail: beckmann@deakin.edu.au

Contract/grant sponsor: Deakin University.

Contract/grant sponsor: Australian Research Council.

COMMENT

Several crystals of $[Ph_2(HO)SnOSn(O_3SCF_3)Ph_2]_2$ were isolated from the reaction of an equimolar ratio of Ph₃SnOSnPh₃ and triflic acid, with the intention of

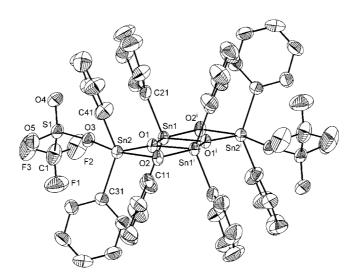


Figure 1. Molecular structure of [Ph2(HO)SnOSn(O3SCF3)Ph2]2. Hydrogen atoms attached to carbon atoms are omitted for clarity. Selected geometric parameters: Sn1-O1 2.117(3), Sn1-O1ⁱ 2.064(3), Sn1-O2ⁱ 2.177(4), Sn1-C11 2.109(5), Sn1-C21 2.091(6), Sn2-O1 2.017(3), Sn2-O2 2.093(4), Sn2-O3 2.306(3), Sn2-C31 2.121(5), Sn2-C41 2.112(5) Å; O1-Sn1-O1 73.97(13), $O1-Sn1-O2^i \ 146.98(13), \ O1-Sn1-C11 \ 99.61(18), \ O1-Sn1-C21 \ 98.7(2), \ O1^i-Sn1-O2^i \ 73.20(13), \ O1^i-Sn1-C11 \ 113.21(17), \ O1-Sn1-C11 \ 113.21(17), \ O1-Sn1-C11 \ O1-Sn1-C1$ $O1^{i}-Sn1-C21$ 115.99(20), $O2^{i}-Sn1-C11$ 96.38(18), $O2^{i}-Sn1-C21$ 92.41(19), C11-Sn1-C21 130.5(2), O1-Sn2-O2 75.95(14), O1-Sn2-O3 80.40(14), O1-Sn2-C31 111.00(17), O1-Sn2-C41 117.62(18), O2-Sn2-O3 156.17(14), O2-Sn2-C31 98.57(19), O2-Sn2-C41 95.33(19), O3-Sn2-C31 92.49(18), O3-Sn2-C41 93.04(19), C31-Sn2-C41 131.3(2)°. Hydrogen bonding contact: $O2\cdots O4^{ii}$ 2.806(6) Å. Symmetry operations: i, 2-x, -y, 2-z; ii, 1.5-x, -0.5+y, 1.5-z.

producing [Ph₃SnOHSnPh₃](O₃SCF₃). The formation of [Ph₂(HO)SnOSn(O₃SCF₃)Ph₂]₂ (Fig. 1) may be rationalized by an adventitious phenyl group cleavage similar to that reported recently for the reaction of Ph₃SnOSnPh₃ with 2,4,6-tris(trifluoromethyl)benzoic acid. The title compound is an analogue of [R₂(HO)SnOSn(O₃SCF₃)R₂]₂ (R = Et, n-Bu, n-Oct), and an example of the broader class of dimeric tetraorganodistannoxanes.

EXPERIMENTAL

Triflic acid (0.204 g, 1.36 mmol) was added to Ph $_3$ SnOH (1.00 g, 2.72 mmol) suspended in MeCN (50 ml) and stirred at room temperature for 1 h. The solvent was removed from the clear solution in vacuo, yielding a clear oil. Crystals (m.p. 270–272 °C) suitable for X-ray crystallography were isolated from a dichloromethane–petroleum spirit (60–80 °C) solution of the compound. Intensity data were collected at 293 K on a Bruker SMART Apex CCD diffractometer for a block $0.08 \times 0.10 \times 0.25 \, \mathrm{mm}^3$. $C_{50}H_{42}F_6O_{10}S_2Sn_4$, M=

1455.72, monoclinic, $P2_1/n$, a=11.4025(7), b=16.3884(10), c=15.3933(9) Å, $\beta=110.285(1)^\circ$, V=2698.1(3), Z=2, 6127 unique data ($\theta_{\rm max}=27.5^\circ$), R=0.046 (4259 $[I>2\sigma(I)]$ reflections), wR=0.109 (all data), $\rho_{\rm max}=1.18~{\rm e}^{-1}~{\rm Å}^{-3}$ (near tin). Programs used: SAINT, SADABS, SHELX-97, ORTEP. CCDC deposition number: 218 184.

Acknowledgements

The Australian Research Council (ARC) is thanked for financial support. Dr Jonathan White (The University of Melbourne) is gratefully acknowledged for the data collection.

REFERENCES

- Chandrasekhar V, Nagendran S, Gopal K, Steiner A, Zacchini S. Chem. Commun. 2003; 862.
- Orita A, Xiang J, Sakamoto K, Otera J. J. Organometal. Chem. 2001; 624: 287.
- 3. Davies AG. Organotin Chemistry. VCH: Weinheim, 1997.